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Abstract 43 

Traditional laboratory tasks offer tight experimental control but lack the richness of our 44 
everyday human experience. As a result many cognitive neuroscientists have been 45 
motivated to adopt experimental paradigms that are more natural, such as stories and 46 
movies. Here we describe data collected from 58 healthy adult participants (aged 18–76 47 
years) who viewed 10 minutes of a movie (The Good, the Bad, and the Ugly, 1966). 48 
Most (36) participants viewed the clip more than once, resulting in 106 sessions of data. 49 
Cortical responses were mapped using high-density diffuse optical tomography (first- 50 
through fourth nearest neighbor separations of 1.3, 3.0, 3.9, and 4.7 cm), covering large 51 
portions of superficial occipital, temporal, parietal, and frontal lobes. Consistency of 52 
measured activity across subjects was quantified using intersubject correlation analysis. 53 
Data are provided in both channel format (SNIRF) and projected to standard space 54 
(NIfTI), using an atlas-based light model. These data are suitable for methods 55 
exploration as well as investigating a wide variety of cognitive phenomena. 56 
  57 
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 58 

Background & Summary 59 

Most cognitive neuroscientists are interested in how human brains navigate the real 60 
world. To do so, we frequently create tightly-controlled laboratory paradigms intended to 61 
isolate one or more aspects of sensory or cognitive processing. We hope that the 62 
findings from these purposefully artificial experiments will generalize to real-world 63 
scenarios. However, is such an assumption justified? To answer this question, cognitive 64 
neuroscience has been increasingly moving towards the use of naturalistic stimuli1–4. 65 

For over 20 years, researchers using fMRI have explored the use of movies to 66 
provide rich stimulation for research participants including children5–7, healthy adults8–13, 67 
and numerous other populations14–17. Although not completely naturalistic, movies 68 
convey complex auditory and visual information covering a range of sensory, cognitive, 69 
and linguistic domains. Movies therefore provide researchers the opportunity to study 70 
processing that more closely mimics everyday experience than standard laboratory 71 
tasks. Additionally, the ability to concurrently address multiple domains of sensory and 72 
cognitive processing may make movies a more efficient way to collect data than 73 
traditional cognitive psychology paradigms. For example, 10 minutes of movie data 74 
collection might replace 30 minutes of domain-specific data collection (e.g., 10 minutes 75 
of an auditory task, 10 minutes of a visual task, 10 minutes of a language task).  76 

Optical neuroimaging, particularly functional near infrared spectroscopy (fNIRS), 77 
offers many advantages for studying human brain function. First, it is acoustically silent, 78 
avoiding the auditory confounds present in fMRI18. Second, implanted medical devices 79 
are not contraindicated, meaning optical imaging can be used on people with implanted 80 
medical devices, such as cochlear implants19,20 or implanted electrodes used for deep 81 
brain stimulation 21. Finally, fNIRS facilitates real-world applications including imaging 82 
during face-to-face interaction22. These advantages make fNIRS well suited for studying 83 
cognition in context23 that includes social interaction24. 84 

Traditionally, drawbacks associated with fNIRS include limited coverage of the 85 
cortex, uneven sensitivity over the field of view, and lack of depth information necessary 86 
for removing superficial (i.e., non-brain) hemodynamic components. These challenges 87 
motivated the development of high-density diffuse optical tomography (HD-DOT), in 88 
which a lattice of closely-spaced sources and detectors provides homogenous 89 
sensitivity and spatial resolution comparable to that obtained in fMRI (Figure 1)21.  90 
 91 
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Figure 1. a) Illustration of HD-DOT cap and optode arrangement (see ref. 21 for 
details). b) Illustration of field of view in the reconstructed images. 
 92 

Here, we present data collected using custom high-density optical tomography 93 
during movie-viewing. Although the use of movies in HD-DOT has been previously 94 
explored 25, our hope is that by making the current data available we will facilitate 95 
methodological and theoretical advances related to naturalistic stimulation. These 96 
include identification of quality control metrics, how to best handle estimated motion, 97 
and optimal methods for modeling quasi-continuous variables. 98 

Method 99 

Participants 100 
Data from 58 participants are included in the data set, ranging in age from 18–76 years 101 
(M = 23; F = 35; mean age = 31); self-reported handedness (right = 55, left = 2, 102 
ambidextrous = 1). Forty nine of the participants reported English as the first language 103 
they learned. Participants were recruited from the Washington University in Saint Louis 104 
community. In addition, participants reported to have normal vision and hearing and no 105 
known history of neurological disorders. All participants gave written informed consent 106 
prior to the experiment session, which was approved by and carried out in accordance 107 
with the Human Research Protection Office at Washington University.  108 

Stimulus 109 
The stimulus was a clip of approximately 10 minutes taken from The Good, the Bad, 110 
and the Ugly (1966), a movie previously used in fMRI8 and HD-DOT25. All participants 111 
viewed between 16 minutes and 48 sec and 27 minutes 30 sec. A subset of the 112 
participants viewed a longer clip; in this case, their data were truncated to 10 minutes so 113 
that all participants had the same amount of data covering an identical portion of the 114 
movie. Copyright restrictions preclude openly sharing the stimulus but guidance is 115 
available on request from the corresponding author. We did not systematically 116 
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document whether participants had previously viewed the selected clip; anecdotally, 117 
most participants reported being unfamiliar with the movie.  118 

The same movie clip was used in several projects between 2012–2022 and thus 119 
was presented along with various other tasks, including auditory, visual, motor, 120 
language, and collection of resting state data. Analyses including 7 of these participants 121 
have been published previously25 but none of the data is included in a public data set. 122 

Procedure 123 
Participants were seated on a comfortable chair in an acoustically isolated room facing 124 
an LCD screen located 76 cm from them, at approximately eye level, which displayed 125 
the movie. The soundtrack was presented through two speakers located approximately 126 
150 cm away at about ± 21° from the subjects’ ears. The sound level was approximately 127 
65 dBA but not calibrated. The HD-DOT cap was fitted to the subject’s head to 128 
maximize optode-scalp coupling, assessed via real-time coupling coefficient readouts 129 
using in-house software. The movie was presented using Psychophysics Toolbox 326 130 
(RRID:SCR_002881) in MATLAB. 131 

Data acquisition 132 
Data was acquired using two different continuous wave HD-DOT caps. The first cap had 133 
96 sources and 92 detectors (LED) (shining 750 nm and 850 nm near-infrared light) 21 134 
and was used in 9 (of total 58) participants. The second cap was built by attaching an 135 
additional pad on top of the previous cap and had 128 sources and 125 detectors 136 
(Laser diode) (shining 685 nm and 830 nm near-infrared light) and was used in the 137 
remaining 49 participants. Source-detector pairs were arranged on both caps to enable 138 
first- through fourth nearest neighbor separations of 1.3, 3.0, 3.9, and 4.7 cm, 139 
respectively. Our in-house software controlled temporal, frequency, and spatial 140 
encoding patterns which achieved an overall framerate of 10 Hz. 141 

Full measurement sets are available in the raw data formats (NeuroDOT and 142 
snirf). In order to make the analyses in this paper consistent, we have removed all the 143 
measurements from the additional motor pad in 49 participants that were scanned using 144 
the bigger cap to contain the same 96 sources and 92 detectors as the other subjects in 145 
the preprocessed data formats (nii and BIDS) and all the analyses presented in this 146 
paper. 147 

Data processing 148 
Data processing is schematically illustrated in Figure 2. Data preprocessing was done 149 
using the NeuroDOT toolbox (https://www.nitrc.org/projects/neurodot) based on the 150 
principles of modeling light emission, diffusion, and detection through the head20,27. 151 
Data processing steps included taking the log-mean ratio of the light levels for each 152 
time-point and the temporal mean across the run (as a baseline value). This step was 153 
followed by excluding any source-detector measurement that had a temporal standard 154 
deviation of 7.5% in the least-noisy 60 sec (lowest mean GVTD)28 of each run or higher 155 
to exclude any noisy measurements due to poor optode-scalp coupling or movement. In 156 
summary, the percentage of measurements remained for each source-detector 157 
separation in this dataset was (mean ± STD): 99 ± 1% out of 644 first nearest-neighbor 158 
pairs, 95 ± 5% out of 1068 second nearest-neighbor pairs.  Due to low SNR, we did not 159 
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use the measurements beyond second nearest neighbors. The measurements were 160 
then high-pass filtered (0.02 Hz cutoff) to remove low-frequency drift. We then estimated 161 
and regressed the global superficial signal as the average of all first nearest neighbor 162 
measurements (1.3 cm source-detector pair separation)29. Following that, data were 163 
low-pass filtered to 0.5 Hz cutoff to remove cardiac oscillations. These frequencies were 164 
chosen in all previous studies that were published using the existing HD-DOT devices 165 
and are consistent with best practices 30. Data were then down-sampled from 10 to 1 Hz 166 
and then used for image reconstruction. 167 

We then computed a forward model of light propagation based on the two 168 
wavelengths used for each device on an anatomical atlas including the non-uniform 169 
tissue structures: scalp, skull, CSF, gray matter, and white matter31. The resulting 170 
sensitivity matrix was then inverted for calculating the relative changes in absorption at 171 
the two wavelengths via reconstruction using Tikhonov regularization and spatially 172 
variant regularization21. Relative changes in oxygenated, deoxygenated, and total 173 
hemoglobin (ΔHbO, HbR, ΔHbT) were then computed using the absorption and 174 
extinction coefficients of oxygenated and deoxygenated hemoglobin at the two 175 
wavelengths. We resampled all data to a 3 × 3 × 3 mm standard atlas using a linear 176 
affine transformation.  177 
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 178 
 179 

 

 
Figure 2. Schematic of data processing and file 
formats. The data are provided in three different 
formats: SNIRF, NeuroDOT, and NIfTI.  

 180 
 181 
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The preprocessed data were then converted to the NIfTI file format for analysis 182 
and sharing purposes. Intersubject correlation analysis was performed using the 183 
automatic analysis (aa) environment32, version 5.8. Additionally, the ndot2snirf function 184 
in NeuroDOT was used to convert the raw data to SNIRF file format followed by 185 
snirf2bids function to generate other necessary metadata files to satisfy the BIDS 186 
specification for NIRS33,34. In addition to using these standard functions, the NIfTI files 187 
were cropped to align with the actual start and end points of the movie stimulus. 188 

Data Records 189 

The data records are organized following the Brain Imaging Data Structure (BIDS 190 
standard34 and available as dataset ds004569 191 
(https://doi.org/10.18112/openneuro.ds004569.v1.0.0) on OpenNeuro35, and will be 192 
listed on OpenfNIRS.org upon publication. 193 

Technical Validation 194 

Data quality 195 
To quantify data quality across sessions we focused on two measures intended to 196 
capture effects of participant motion and light levels (Figure 3). Because we do not 197 
have objective measures of motion (e.g., photometry or accelerometers), we rely on a 198 
signal-based proxy for motion: global variance of temporal derivatives (GVTD)28. GVTD 199 
is conceptually similar to the DVARS measure sometimes used in fMRI36,37. 200 
 We used the heartbeat (pulse) signal-to-noise ratio (SNR) as an indicator of 201 
detecting physiological signal in the data. The pulse SNR was calculated as the 202 
proportion of the pulse power (based on the peak FFT magnitudes in the 0.5–2 Hz 203 
window) divided by a noise floor (based on the FFT magnitudes in the 0.5–1 Hz 204 
window). 205 
 206 
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Figure 3. Quality control measures. a) Mean light levels over the cap for a sample 
participant (850 nm light). b) Top: example temporal derivative time traces from source 
detector distances between 1–19 mm, 20–29 mm, and 30–40 mm respectively, for 850 
nm light in the same sample participant; Bottom: GVTD over the same time period. c) 
Scatter plot of GVTD (proxy for motion) and pulse SNR levels for all sessions. 
 207 

Intersubject correlation analyses 208 
In an intersubject correlation analysis, the similarity of time courses is computed for the 209 
same voxel in each pair of participants; averaging these values provides an average 210 
intersubject correlation value for every voxel of the brain38. Numerous studies have 211 
used intersubject correlation analysis to identify regions of the brain which show similar 212 
patterns of activity across a group of participants. For movie viewing, these values are 213 
typically higher in sensory regions (e.g, visual cortex and auditory cortex) than regions 214 
associated with complex linguistic or executive processing8,39. One benefit of 215 
intersubject correlation analysis is that it is sensitive to shifts in the timing of activity 216 
across participants. Thus, demonstrating reasonable intersubject correlation values in 217 
sensory regions suggests the time courses across participants are correctly temporally 218 
aligned. 219 
 As part of our technical validation, we therefore performed an intersubject 220 
correlation analysis (Figure 4a). Because not all participants had multiple sessions of 221 
movie data, we restricted our analysis to the session with the highest pulse SNR from 222 
each participant. The signal average was subtracted from each frame and a Pearson 223 
correlation coefficient was then computed voxel-wise using the corrected data for all 224 
pairs of subjects. We see the highest values in auditory and visual cortices, broadly 225 
consistent with prior studies in both fMRI8 and HD-DOT25.  226 

We then placed participants into one of three groups based on pulse amplitude 227 
measured in the optical signal (low group: 3.0 < pulse ≤ 6.0; med: 6.0 < pulse ≤ 14.5; 228 

high: 14.5 < pulse < 25.5) (Figure 4b). As shown in Figure 4c, we observed that r 229 
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values were notably higher in subjects in the high pulse amplitude group compared to 230 
those in the medium and low groups, supporting our use of pulse amplitude as a quality 231 
control measure. 232 
 233 
 234 

 

 
 
Figure 4. Intersubject correlation analysis. a) Correlation map shows the average 
pairwise correlation across all subjects. Maximum r-values are observed in sensory 
areas. The SNR in these subjects, as quantified by pulse amplitude, ranged from 
approximately 3 to 25. b) A histogram of pulse values, and used to separate subjects 
into low (red), medium (blue), and high (green) SNR groups. c) Intersubject correlation 
maps obtained for subjects grouped by SNR. High correlations extend beyond sensory 
areas in the highest SNR group. 
 235 
 236 
 237 
 Finally, we wanted to make sure that the spatial pattern of our intersubject 238 
correlation maps was not a result of outliers in the data. We adopted a censoring 239 
approach using GVTD to exclude frames with high variance (likely driven by motion). 240 
We used a GVTD threshold of 5E-04 to identify outliers. If the GVTD of a given frame 241 
exceeded this threshold in either subject during pairwise correlations, the frame was 242 
excluded when computing the correlation. Results from this analysis are shown in 243 
Figure 5. Although the absolute correlation values are reduced, we see a similar spatial 244 
pattern to the intersubject correlation maps, consistent with the data being correctly 245 
temporally aligned across participants. 246 
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Figure 5. Results of intersubject correlation after adjusting for motion artifacts. Layout 
mirrors the organization of Figure 4.  a) Correlation map shows the average pairwise 
correlation across all subjects. Maximum r-values are observed in sensory areas. b) A 
histogram showing the number of participants who had different numbers of frames 
excluded for exceeding the GVTD threshold. c) Intersubject correlation maps on 
participants grouped by pulse SNR. (Pulse SNR was calculated prior to censoring, so 
these groups of participants are the same as those shown in Figure 4.) 

 247 

Code Availability 248 

Code used for technical validation is available from http://github.com/jpeelle/GBUDOT. 249 
 250 
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